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PERIODIC SOLUTIONS TO A LIMITED PROBLEM OF THREE BODIES,
INCLUDING A LARGE NUMBER OF REVOLUTIONS AROUND
A SMALL BODY

I. V. Kurcheyeva

To construct pericdic solutions in a limited problem of three /168
bodies, the method of the small Poincare)parameter is widely used.
In a system of differential equations, terms are dropped which
contain the small parameter. Given a new sfstem which is called
‘generative, that admits periodic solutions. In executing several
conditions, one and only one periodic sclution of the primary
system will satisfy the periodic solution of the generative sys-
tem. In striving to zero of the small parameter, the periocdic
solution approaches the generative.

There are several methods for constructing different‘genera*

tive systems in a limited problem of three bodies.

1. Terms are discarded which depend on the perturbing mass;
- consequently we derive a problem cf two bodies (this method is
for deriving periodic solution of a limited problem of three
bodies and was first employed by Poincare [l)], then Schwarzshild
21, Batrakov [3-4], Arenstorf [5-8] and many others}) .

2. The mean motion n is taken as the small parameter. The
~generative system will be a problem of two stationary centers (cf.

Demin [9], Arenstorf [6]).

3. The small pardmeter is introduced artificially by trans-
formation of coordinates and time (c¢f. Aksé&nov [10]).

4. The averaged problem of three bodies is taken as the



~generative system (the method introduced by Merman for the aver-
aged Fatu problem [12]).

In this article, the averaged Gaussian problem is taken as

the generative system.

As we know, a plane limited circular problem of three bodies/169
studies the motion of point P of infinitely small mass under the
effect of Newtonian gravitation of two material points E and M,
rotating around their common center of gravity in circular orbits.
The units of time, mass and distance are selected so that the
mass of bodies E and M would be egquated respectively to 1 - u,

Y and their reciprocal distances, angular velocity, gravitational

constant would be egquated to one.

Then; in a polar system of coordinates (body M of lesser
mass is taken as the center) the egquations of motion of point P

will be written in the form

F=rit4 Wi, I

d .
rn (r’(p)t—t WE‘{, (1)
where W is the force function describable by formula
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where 6 is the difference in longitudes ofJ¢E, ¢»of point E and
P respectively, which is equal to
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Since the average motion ng of point E is egual to one, then

¢E = t, and

) e - | (3)
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System (1) has a unique integral (Jacobi integral) which we
can write in final form
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In Keplerian phase space (a, p, M,w), eguations (1) have the
form

R

‘da _ 2Va L _OR
dat Ve~ M

a2V p  OR
L T

am _ Ve _ 2VE eR

AT g T Ty TToa ‘
am _ 2Vp R Y : (5)
L EmE T

* Here R is the perturbation function which, in a polar system of
coordinates, has the form
' !

iRiilup)l V'mm'_rmsﬁ]. - (6)

By the Keplerian phase coordinates R we can express, with
the aid of formulas ‘

P=a+tuv,
tg5= | i_[uﬁ /o p}tg_g_‘,
. E— ]/I;ng)—sitlE:M. (7)



To eliminate the possible c¢collision of planetoid.” P and /170
body E, let us introduce the condition

R 2= )

Inequality (8) denotes that body P, in all its time of motion, does
not go beyond the orbit of body E.

Then function R can be expanded inte a Fourier series:

R=¥
q-_:()r

Coor @ PYcOS (gM+73),
[ Carle Preos @ (9)
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where w = w > t, and C , are defined functions of a, p. Let
- r

us assume that
| R=Ri(a, DH-Ro (@ p, M. 3)._ }

———

(10)

This presentation is always possible, since R is a periodic func-
tion of M and t with a period of 2w, 27 and for R, we can take

a twice averaged function of R:

¢ b m T ‘21521!““
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In this case,,function R2 will possess the following property:
in terms of any a priori given small € > 0 we will always find
such a small 8-neighborhood of body M {(r < §) in which the in-
equality |R,| < e will be fulfilled. This follows from the con-
tinuity of function R, and the fact that R2(0, 0, M, w) = 0.

In the small &-neighborhood of body M, the function can bé

written as

4 t  Re=eRw . (12)



where ¢ is a small parameter, and R2

_ We will seek a solution of system (5) which lies totally
in the small d-neighborhood of point M.

)
1

e 1 = Q.

In this case, we can

apply to system (5) the method of the Poincare small parameter.

Where 6= 0, i # 0, system (5) will appear as:

We have a twiced averaged Gaussia% problem, integrating

which vields

g
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a=dy, Cm
P=po
M=nyt+ M,

li o= fgl4ug,

where
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Equations (14) are the motion along the ellipses with focus
at point M. The semiaxis and parameter are invariable, and the
apsidal lines rotate with constant angular velocity, dependent
only on a and p. The law of dependence of M on time remains as
in unperturbed motion linear, but with a variable coeffié¢ient of
proportionality. The trjaectory of motion relative the station-
ary axes will be periplegmatic trajectory, spinning between two
circles, first touching one, thén the other. The centers of the
circles are located at point M, and the radii are equal, respec-
tively, to

i
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If constants a4Pq satisfy the condition

s ” l (16)
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where kl' k2 are whole integers, then solution of (14) can be
considered, periodic, of period T.

Let us investigate only such constants agr po for which are
"fulfilled the inequality

[ c .
iao(l-l- ,/ !—%)<76. \’ (17)
Under such conditions, periodic solutions of the system of
differential equations (13) will lie wholly wtihin the 6-neigh-

borhood of point M.

According to Poincare's method, the periodic solution of



system (5), clcse to (14), and having the same period, will be

written as
1 a=ag+P+E1

» P=PotBrtts C
M=mt+n+1, 7 =
| o=mttptm (18)

<

are new unknown’iperiodic functions of period T;

L &O=0, y@=0 k (19)
To define the small quantities £, v,, let us write the
equations '
 M©)=0, 5 ©)=0,
N A e
L (20)
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These conditions signify that the curve described by equa- /172

tions (18) becomes symmetrical relative to the axis connecting
both bodies E and M and is closed.

The conditions of periodicity of (20) are taken instead of

the classic condition of rotation of a point in an initial state
.through a time interval T > 0, which leads to the expressed case.

Substituting (18) in (5}, let us define ni and up to within

terms of the first power o, Bi' Yy

“1<fg)i(—‘3%ﬁl+g—ﬁf,ﬂg}§+:.._, (1)
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Let us rewrite (20), using (18) and (21):

Y

(22)
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n,, n, are linearly independent functions, because
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And consequently, there is always an infinite set agr Py whose
determinant D is not equal to zero. Equations (22) are solvable
solely with respect to Bl’ 62 in the form of holomorphous functions
with respect to o.

Consequently, for small ¢ > 0, there exist periodic solu-
tions which are symmetrical relative to the axis connecting bodies
E and M which, when o= 0, are in conformity with periodic solu-
tions of (14), (16) of the generative system.
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